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Transitions to chaos in a forced jet:
intermittency, tangent bifurcations and hysteresis

By GEORGE BROZE AND FAZLE HUSSAIN
Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, USA
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Experimental studies of a forced transitional jet at moderate Reynolds numbers reveal
interesting transitions between low-dimensional states, namely tangent bifurcations,
intermittency and hysteresis. The experiments were carried out in an axisymmetric air
jet with a laminar top-hat exit profile in the low-noise ambient of a large anechoic
chamber, using forcing amplitude and frequency as control parameters. Tangent
bifurcations are seen to occur in two different transitions from periodicity to chaos: (i)
from stable pairing to nearly periodic modulations of pairing and (ii) from stable
double pairing to a quarter-harmonic chaotic attractor. In case (i), an empirically
derived mapping closely reproduces the temporal dynamics of one chaotic attractor at
a point just after the tangent bifurcation. In case (ii), the intermittency was
characterized by estimating the scaling exponent of the p.d.f. of the periodic durations,
which was found to be close to the characteristic value for type-II intermittency.
Hysteresis is seen at higher Strouhal numbers in the transitions between aperiodic
modulations and the periodic/chaotic double pairing states. Based on simultaneous
flow visualization and velocimetry, the hysteresis appears to be associated with
intermittent tilting of (otherwise) axisymmetric vortices. These transitions are explained
in terms of feedback-driven dynamics from vortex roll-ups and pairings, which can be
phase-locked (periodic) or unlocked (nearly quasi-periodic and chaotic). The observed
transitions connect large regions of deterministic behaviour in the phase diagram,
confirming the existence of a low-dimensional dynamical system in transitional jets —
an open flow of technological relevance.

Two-point coherence measurements indicate that spatial coupling (and, hence,
coherent motion from pairing dynamics) extends for five to eight diameters from the
exit, well beyond the locations of pairing and double pairing. This justifies the use of
single-point measurements and confirms our hypothesis that the dynamics in this
convectively unstable flow are primarily temporal rather than spatio-temporal.

1. Introduction

The prospect of describing flows as low-dimensional dynamical systems implies that
substantially fewer degrees of freedom (than in numerical simulations) may be
adequate to model and control flow transition, and perhaps even turbulence. In order
to achieve these goals, it is first necessary to develop a conceptual model of the
dynamics and identify relevant control parameters, dynamical states and transitions
between states. The existence of a low-dimensional dynamical system in an open flow
(typical of most technological applications) was hypothesized and experimentally
verified by Broze & Hussain (1994, hereinafter referred to as BH), who presented a
phase diagram and evidence of two periodic and two chaotic attractors in circular jets.
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In this paper, we explore the transitions between these states in order to substantiate
the proposed conceptual dynamical system. Further, we provide interpretations of
these states and transitions in terms of the dominant vortex dynamics in the jet
transition region. These results are intended to lay a foundation for and provide
validation of future quantitative models and control approaches.

The application of dynamical systems techniques in open free-shear flows presents
an even greater challenge than in closed flows, since open flows are typically
convectively unstable and hence very susceptible to ambient noise. (Note that open
flows are encountered in most situations in nature and technology but have been least
studied as dynamical systems because of their inherent complexity.) For convectively
unstable flows (such as jets) to have dominant low-dimensional dynamics, they require
feedback from downstream events to initiate upstream instabilities (which will
otherwise be triggered by ‘high-dimensional’ noise, inherent in a practical en-
vironment). To emphasize this noise susceptibility, definitions were proposed in BH to
distinguish between flows which are ‘physically’ open (with mass flux across the
control volume boundaries) and ‘dynamically’ open (i.e. noise driven). The argument
put forth there was that low-dimensional dynamics in a noise-susceptible (open) flow
implies self-excitation (via feedback) and hence dynamical closure. Hereafter in this
paper (with the exception of discussion in §5), we use ‘open’ only to refer to flow
geometry but not necessarily dynamics.

Transitions from order to chaos (and hence, presumably, to turbulence) in flow
systems have been studied in the past using both stability and dynamical systems
theory. Four routes to chaos are frequently observed in dynamical systems models: (i)
a quasi-periodic route via a sequence of Hopf bifurcations (Ruelle & Takens 1971;
Newhouse, Ruelle & Takens 1978), (ii) an infinite sequence of period-doubling
bifurcations leading to chaos (Grossmann & Thomae 1977; Feigenbaum 1978 ; Coullet
& Tresser 1978), (iii) a direct transition to chaos via intermittency (Pomeau &
Manneville 1980), and (iv) a homoclinic catastrophe (see Guckenheimer & Holmes
1983, §6.5). These routes have been observed in closed flow experiments (quasi-
periodic route: Taylor—Couette flow - Brandstiter & Swinney 1987; Rayleigh—Bénard
convection — Jensen et al. 1985; period doubling: Rayleigh—-Bénard convection -
Libchaber & Maurer 1980; intermittency : Rayleigh—-Bénard convection — Bergé et al.
1980; Dubois, Rubio & Bergé 1983 ; homoclinic chaos — Mullin & Price 1989). In open
flows, some examples of apparent chaos have been found, but only a few definitive
results have been reported about the transitions to chaos. Sreenivasan (1985) observed
a quasi-periodic route to chaos in a cylinder wake with aeroelastic coupling; Van Atta
& Gharib (1987) argued against the possibility of such a scenario occurring in a
uncoupled wake. Williams-Stuber & Gharib (1990) found a quasi-periodic route to
chaos in an aerofoil wake, using two forcing frequencies in addition to the natural
shedding frequency (thus directly controlling almost all facets of the dynamics). We
know of no prior experimental evidence of tangent bifurcations or intermittency routes
to chaos in open flows.

Another important phenomenon is hysteresis near transition points, associated with
subcritical bifurcations. Hysteresis has the profound implication that flow states are
non-unique for a given set of control parameter values and instead depend on the path
in parameter space (and hence the initial condition); hysteresis has been observed in a
limited number of open flow experiments. Muylaert (1980) found hysteresis in the
pressure coefficient ¢, as the angle of attack « of a delta wing was varied, with jumps
in ¢, presumably corresponding to the appearance and disappearance of vortex
breakdown. In experiments similar to Muylaert’s, Gersten et al. (1985) noted that this
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FIGURE 1. Phase diagram of the transitional circular jet in the St,, a, parameter space. The inset
shows a schematic of the nozzle, vortex dynamics and probe location.

hysteresis was a function of Mach number M and conjectured that it would appear as
a cusp singularity near M ~ 0.5. They showed the onset and growth of the hysteresis
region in the (c,, «)-plane as the spanwise air-blowing coefficients c,, was varied. Spotar
& Terekhov (1987) found apparently bistable flow patterns in turbulent swirling jets
impinging on a plane, which was discussed theoretically by Shtern & Hussain (1993).
The flow alternated between the two states on slow time scales, suggesting intermittency
but also consistent with a hysteretic system near a cusp with jumps caused by finite-
amplitude disturbances.

BH presented an experimentally determined phase diagram (repeated here as figure
1 for convenience) and evidence of periodic and chaotic attractors related to the vortex
dynamics of the transition region of a forced circular jet using two control parameters:
non-dimensional forcing amplitude a, (= u;/U,) and frequency St, (=f,,D/U,)~
where D is the jet diameter, U, is the jet exit mean velocity, £, is frequency of excitation
and u; is the r.m.s. longitudinal velocity fluctuation at the jet exit. As discussed in
Appendix A, Reynolds number Re,, (= DU, /v, where v is the kinematic viscosity) has
little effect on the dynamics at the high Re,, used here; its effects are considered briefly
in §3.2. A brief description of each state is given in table 1. In this paper we present
experimental evidence of transitions between these states (namely tangent bifurcations,
intermittency and hysteresis) and interpret them in terms of vortex dynamics. The
paper is organized as follows. Section 2 provides evidence of tangent bifurcations in
two different transitions in the jet flow. In §3, we present data from the hysteresis
region in the parameter space and an idealized picture of the local bifurcation surface.
To confirm that the dynamical system is indeed temporal, we present coherence
measurements in §4 to indicate the strength and spatial extent of dynamical coupling.
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Acronym Name Dynamics
SP Stable pairing Single vortex pairings are periodic in time and their
pairing location is fixed in space
NPMP Nearly periodic Pairings are chaotic (nearly quasi-periodic) in time;
modulations of pairing pairing location oscillates up- and downstream
SDP Stable double pairing First and second pairings are periodic in time and
fixed in space
QCA Quarter-harmonic Overall sequence of vortex dynamics is chaotic in
chaotic attractor time; first and second pairing locations oscillate up-
and downstream
INT Intermittency Switches non-periodically between two states
(notably SDP and QCA)
AM Aperiodic modulations Non-periodic in time; apparent switching between
axisymmetric and titled vortices (see at higher St,)
SPMQ Stable pairing with First pairing is apparently periodic in time, but
modulated quarter-harmonic  second pairing is weakly modulated
FO Fundamental only Non-periodic in time with no apparent pairings; a

sharp spectral peak at the forcing frequency sits on a
broadband pedestal

TaBLE 1. Summary of flow states shown in the phase diagram (figure 1).

In the concluding remarks (§5), we briefly discuss the implications of these results for
vortex interactions in the jet.

2. Tangent bifurcations and intermittency

Of the known routes to chaos, the one found in our experiments is intermittency via
a tangent bifurcation. There are two transitions which demonstrate this clearly: (i)
from SP to NPMP and (ii) from SDP to QCA. These four states and their dynamical
invariants are documented in BH; their locations in the (St,, a,) parameter space are
shown in figure 1. As indicated in table 1, SP and SDP are periodic attractors, and
QCA and NPMP are chaotic attractors. These transitions are discussed in §§2.1 and
2.2.

2.1. SP-NPMP transition

NPMP is seen in two narrow parameter bands: 0.65 < St;, < 0.73, a, = 3-4% and
a; = 7-8 % (see figure 7 in BH). NPMP always has SP as a neighbour in parameter
space and is quite likely to be the result of a bifurcation from this periodic state;
this transition is illustrated by three traces shown in figure 2 at St, ~ 0.68 (the time
axis indicates the portion of figure 3 to which figure 2 corresponds). Periodic constant-
amplitude SP is seen in the first trace for a; ~ 4.3%. At a, ~ 3.7 %, trace (ii) shows
intermittent modulated pairing and SP. Finally, by (iii) a; ~ 3.4 %, the segments of
SP are gone, and the modulated pairing has become nearly periodic (hence NPMP).

In order to analyse this transition further, the signals were decomposed into the
modal amplitudes and phases using the procedure described in Appendix B. Vortex
roll-up and pairing are the dominant events in the jet near field, and subharmonic
resonance is the mechanism of vortex pairing which is crucially dependent on the
modal amplitudes and phase difference (Monkewitz 1988); however, being forced at a
constant level, fundamental amplitude plays the role of a parameter rather than a
dynamical variable. Thus, the subharmonic amplitude a, and the fundamental-
subharmonic phase difference ¢, are the dynamical variables of the system. Data
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FiGure 2. Time traces of the transition from stable pairing SP to near periodic modulations of pairing
NPMP at St,, = 0.68, Re, ~ 4.0 x 10*: (i) a, ~ 4.3%, (ii) a, ~ 3.7%, and (iii) a, ~ 3.4%. Hot wire
located at x/D = 1.5 on the jet centreline.

were taken on the jet centreline at x/D & 1.5, a point downstream of vortex roll-up
where the fundamental has saturated and subharmonic resonance (leading to vortex
pairing) has begun. Although measurements anywhere within the potential core are, in
principle, able to reveal the dynamics (see §4), a site between the saturation of the
fundamental and subharmonic is particularly apt for capturing the pairing dynamics.

In figure 3, sequences of (a) a, and (b) ¢, are shown at the same St;, and a, as figure
2. The direct correspondence between the signal and a—¢, time sequences can be seen
by comparing figure 2 with the interval 6 < ¢t < 7 in figure 3. For a; ~ 4.3 %, a, is high
and constant and ¢, is fixed, as is expected for SP. In the intermittent state at a; ~
3.7%, modulated pairing is indicated by fall-off and rise of a4, and the corresponding
jumps in ¢,; at other times, varying intervals of SP are indicated by fixed a, and ¢,.
Finally, for NPMP (case iii), a, shows the expected nearly periodic variations, with a
(positive) jump in ¢, at each a, minimum. Thus this sequence for decreasing a, indicates
a transition from a periodic state (SP) to a nearly quasi-periodic, chaotic state (NPMP)
via intermittency.

From the discrete sequences of a, and ¢, in figure 3, return maps were constructed
to reveal the transition dynamics. The return maps for SP are obviously fixed points
for both a, and ¢, while those for the intermittent case are a mixture of those for SP
and NPMP. Therefore, only maps for NPMP are shown. Figure 4(a) shows a plot of
a, versus ¢,; the subscript n refers to the number of the realization in the sequence.
There is a peak near ¢, = 0.2n where points are densely clustered; this is the preferred
phase angle, and a, reaches a maximum here. This corresponds to the maxima of the
envelope of the time trace shown in figure 2(iii). Around this ¢, value, g, falls off
sharply, reaching a minimum near ¢, = 0.7n. The variation of a, with ¢, is apparently
n-periodic (as is expected). There is a discernible loop in the plot near the ¢, maximum,
implying that the function is multivalued, perhaps due to a projection from the actual
higher-dimensional state space onto this two-dimensional one. This figure reveals both
a preferred phase angle and the strong dependence of a, on ¢, (especially near the a,
maximum), as expected from subharmonic resonance theory. Husain & Hussain (1989)
measured subharmonic amplitude as a function of initial ¢, at a location upstream of
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FIGURE 3. Time sequences of (@) the subharmonic amplitude a, and (b) the fundamental-subharmonic
phase difference ¢, in the transition from stable pairing SP to nearly periodic modulations of pairing
NPMP at St, ~ 0.68, Re,, x 4.0x 10%, x/D = 1.5: (i) a, = 4.3 %, (ii) a, = 3.7 %, and (iii) a, = 3.4%.

subharmonic saturation in a single-stream axisymmetric mixing layer; in their
experiments, however, they controlled the initial amplitudes of both components
(a;4, a) and their initial phase difference (¢,,) at the separation point. Figure 3(b)
in Husain & Hussain resembles an inverted image of figure 4(a) here, with a broad
maximum and a cusp-like minimum. The difference between their figure and ours is
because they plot local subharmonic amplitude versus initial phase difference; here we
use the local phase difference. When resonance occurs, the local ¢, is fixed regardless
of initial ¢,; hence, all high a, at this location will occur at nearly the same ¢,.

The first-return map of a, is shown in figure 4(b). The loop structure resembles either
loop of the NPMP Poincaré section shown in BH. The details found in the Poincaré
section (such as folds and accumulation points) are not seen here, because the
amplitudes are integrals (i.e. averages) over short segments of the signal rather than
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FIGURE 4. (a) Subharmonic amplitude a, versus phase difference ¢,; (b) first-return map of a, for
nearly periodic modulations of pairing NPMP. S1,, ~ 0.68, a, =~ 3.40%, Re, ~ 4.0 x 10%, x/D = 1.5.

being instantaneous amplitudes (see Appendix B for details). Nevertheless, the basic
cycle nature of the amplitude is revealed in this plot.

Figure 5(a) shows the first-return map of ¢,, which reveals some very interesting
features of the transition from SP to NPMP. From the scattered points, one can infer
an underlying curve, or ‘map function’, which enters on the left at ¢, /n &~ 0.15, crosses
or becomes tangent to the diagonal at ¢,/ &~ 0.2, rises and wraps at the top from
about (0.6, 1.0) to (0.6,0), and then levels off and wraps at the right side from about
(1.0,0.15) to (0,0.15). The phase wrapping occurs because a phase difference of 0 and
n are the same: a shift of the subharmonic by = results in the same relative phase of
the fundamental to the subharmonic. Before addressing this particular map, some
general discussion about this type of map will be presented.

As mentioned above, the map function may (i) cross the diagonal or be (ii) tangent
or (iii) nearly tangent to it. If the map function crosses the diagonal, there would be
two intersections, resulting in one stable and one unstable fixed points of the dynamical
system. (Crossings of the diagonal are fixed points because at these points ¢,., = ¢,,.)
In this case, iterates would accumulate at the stable fixed point, and the system would
remain in that state. This is the case in SP, where ¢, remains nearly constant in time
when measured at a fixed location in space. (Although the flow is 2 /£, -periodic, ¢, is
determined from integrals over a full subharmonic period and thus would have a
constant value in the sequence.) In case (ii), the two fixed points meet at the point of
tangency and become a single fixed point with marginal stability; this is a tangent
bifurcation point in parameter space. In case (iii), the map function lies above the
diagonal; the bifurcation has taken place and no fixed points of the map (period-1
periodic states of the flow) can exist. The post-bifurcation state can be one of several
cases: (i) a periodic map of period #; (ii) a quasi-periodic map; or (iii) a chaotic map.
A necessary condition for chaos in one-dimensional maps is that the map function be
non-invertible.

In the light of this information, we will discuss figure 5(a). As was seen in figures 2
and 3, SP becomes NPMP by apparent intermittency. The NPMP ¢, return map seems
(underlying the scatter) to reveal a tangent bifurcation, as is expected in an
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FIGURE 5. (a) First-return map of phase difference ¢,; (b) averaged first-return map of ¢, for
nearly periodic modulations of pairing NPMP. Flow parameters the same as for figure 4.

intermittency transition. If this is true, then the points in the map should not fall on
or below the diagonal, but this occurs near ¢,/m =~ 0.2 (figure Sa). There are two
possible explanations for this phenomenon: (i) the map is marginally stable and is
being perturbed out of its fixed point by flow noise; or (ii) there is no fixed point, but
flow and measurement noise contaminates the measurements of ¢,. Explanation (i) is
not probable since the flow dynamics are so nearly quasi-periodic (and the map
dynamics so nearly periodic); it is quite unlikely that (random) noise could perturb the
map away from the fixed point as periodically as is the case in our experiments (see
later discussion regarding figure 6). A case of regularly occurring noise-driven
intermittency has been observed in perturbed homoclinic orbits in a flow model (Aubry
et al. 1988), but there is no reason to believe a homoclinic connection exists here.
Explanation (ii) is thus more feasible: estimates of ¢, are contaminated by flow noise.
The noise is unavoidable; in order to make the measurements as ‘instantaneous’ as
possible, the minimum possible size of signal segment was used, i.e. 7 = 2/f,,. The
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FIGURE 6. Spectra of phase difference ¢_from (@) experimental data and (b) iterates from the averaged
return map for nearly periodic modulations of pairing NPMP. Flow parameters the same as for
figure 4.

results in a wide spectral bandwidth b = f,, /2, which includes all fluctuations between
f../4 and 3f,,/4 (66-198 Hz) in a, and between 3f,,/4 and 5f,,/4 (198-330 Hz) in
a;, When bandwidth is increased, amplitude estimates include contributions from
frequencies other than the fundamental and subharmonic.

Inan attempt to find the underlying map function, the data shown in figure 5 (a) were
averaged (as described in Appendix B) and cubic splines were fitted to the averaged
points. The results are plotted in figure 5(b). Two interesting features are obvious: (i)
the function approaches the diagonal very closely (minimum gap is 0.00187), but does
not touch or cross it; and (ii) there is a small region 0.07 < ¢, /1 < 0.18 where the
function is non-invertible. The first supports the hypothesis that there is no fixed point
but instead a small gap through which iterates pass. The second feature meets a
necessary condition for chaos: a horizontal dotted line in the inset crosses the function
in three places, illustrating the non-invertibility.

Having obtained the map function empirically, this function was iterated numerically
to see if there was any correspondence with the experimental data. Time sequences of
the phase ¢,(¢) (not shown) from experimental data and iterates of the map function
are similar: the number of iterates per modulation cycle is = 20 in both cases. This
similarity is further demonstrated by spectral analysis of ¢.(¢), where the modulation
frequency seen in the spectrum of experimental phase angles (figure 64) is almost
exactly reproduced in the iterates of the map (figure 65): quadratic curve fits locally
around the main peak yields f,,,,; = 6.93 Hz for the experimental data and f,,,, =
6.95 Hz for the map iterates. The iterates of the averaged map were analysed using
nonlinear dynamics tools, which reveal correlation dimension v = 0.96 and largest
Lyapunov exponent A, & 0.11 bits per orbit (b.p.o.). For comparison, calculations
using the unaveraged phase data yield v = 1.3 and A, = 0.3 b.p.o. The difference in
dimension between the flow and the map should be unity, and this is approximately the
case for the unaveraged map; the largest Lyapunov exponents are comparable in the
flow (A, & 0.25 b.p.o.) and the map. The difference in dimension is greater than unity
between the flow (v > 2) and the averaged map (v < 1); this indicates that the dynamics
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are not fully captured in the average, which is a type of projection. However, some
essential features of the flow are retained: the map dynamics are nearly periodic but
actually chaotic (as was the raw data), and the modulation frequency is accurately
predicted. Since the averaging process yields a deterministic map, its iterates have no
random noise; the good agreement in modulation frequency and chaos characteristics
between data and the averaged map indicate that noise plays a minimal role in the
dynamics.

Error analysis (presented in Appendix B) shows that the error in ¢ estimates scales
on the relative amplitude errors, i.e.. the ratios of amplitude errors to amplitudes
themselves. The error in the averaged ¢, was estimated by evaluating equation (B 4) in
bins of width ¢ /n = 0.01. This finite bin width introduces an uncertainty (in the error
estimate), but this is unavoidable due to the finite amount of data. Taking the
amplitude error estimates ¢, and ¢, to be the standard deviations o, and o, within each
bin, the error limit range is ¢, &~ 0.017—-0.04x at various ¢,. These limits are larger than
the gap, meaning that it is possible that the function does touch or even cross the
diagonal. However, small shifts in the curve near the point of tangency would cause
large differences in modulation frequency; the exceptional agreement in frequency
indicates that the averaged curve (figure 5b) must be very close to the true function.

Several features indicate subtle dynamics in this intermittency transition. Specifically,
the inset in figure 5(b) seems to show a dual near-tangency at phases ¢, ~ 0.19 and 0.22
(with a slightly larger gap in between); dynamically, this would mean that the system
would first reach a plateau near one phase for some time, then near the other phase,
then jump. This seems to be borne out in figure 3(b) for cases (ii) and (iii). Since a, is
closely linked to ¢, (because ¢, controls the resonant subharmonic growth rate), a
similar feature is expected in amplitudes as well. This can be seen to some degree in
figure 3(a) for cases (ii) and (ii)). Even in the a, return map (figure 44), a second
accumulation point can be seen on the diagonal at a, &~ 650, as well as a clearer one at
the turning point at a, ~ 800. The accumulation points imply that feedback there is
almost phase-locked. We speculate that the initial subharmonic amplitude is higher for
one of these two phases than the other but with a lower corresponding growth rate (see
§2.3); in both cases the time from initiation to feedback might almost match the
subharmonic period (the condition for phase-locking).

The results presented here clearly indicate that the SP-NPMP transition is a tangent
bifurcation from a phase-locked periodic state to a phase-varying, nearly quasi-
periodic, chaotic state. It further demonstrates the important role of ¢ in the long-time
dynamics of vortex pairing. This transition scenario is further supported by a one-
dimensional map for ¢, dynamics (derived from the concepts of linear instability,
subharmonic resonance and feedback; Broze & Hussain 1991) which undergoes
tangent bifurcations from a fixed point (e.g. SP) to periodic, quasi-periodic and chaotic
(e.g. NPMP) states — all dense in the parameter space.

2.2. SDP-QCA transition

The transition from stable double pairing (SDP) to the quarter-harmonic chaotic
attractor (QCA) is apparently intermittent, alternating unpredictably between the two
states ad infinitum. Because of this intermittency, a tangent bifurcation was expected in
this transition; therefore, return maps of ¢, and a, were constructed and averaged,
similar to the NPMP case. In addition, the scaling exponent of the probability density
function of the lengths of periodic segments of the signal was estimated and compared
with the scaling of known intermittent models.
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phase difference ¢, for intermittency between stable double pairing SDP and the quarter-harmonic
chaotic attractor QCA. Sr, ~ 1.20, a, ~ 1.4%, Re, ~ 2.3 x 10%, x/D = 2.0.

2.2.1. Phase and amplitude return maps

In this case where two subharmonic resonances occur (i.¢. the pairing of two vortices
which themselves result from earlier first pairings), there are four dynamical variables:
two amplitudes (a, and a,, the subharmonic and quarter-harmonic respectively) and
two phase angles (¢, and ¢, the phase differences between fundamental and
subharmonic, and between subharmonic and quarter-harmonic respectively). Since
both SDP and QCA have high-amplitude quarter-harmonic components, we use a,
and ¢, as the variables of interest for analysis. These variables are excellent indicators
of periodicity or chaos, as is illustrated below.

A representative hot-wire signal is shown in figure 7 (a). At each end of the time trace
are chaotic oscillations characteristic of the QCA attractor, while the segment in the
centre of the trace is nearly periodic with frequency f,,/4. (In fact, the slight
displacement of adjacent peaks in this segment even indicates a weak f,, /8 component.)
Phase-amplitude decompositions were performed as described in Appendix B. Figures
7(b) and 7(c) show a, and ¢, respectively for the time trace displayed in figure 7(a).
Corresponding to the long periodic segment in the centre of figure 7(a), there are
segments of high a, (figure 7b) and nearly constant ¢, (figure 7¢), while the chaotic
segments have rapidly fluctuating amplitude and phase which are typically not in the
range of values seen in the periodic segment. This indicates that these variables are
good discriminators of SDP and QCA.

A ¢, first-return map was made from these data and is shown in figure 8(a). Unlike
figure 5(a) for NPMP, the broad scatter of experimental data is expected ; there seems
to be a cross-shape centred on the diagonal at ¢, /m ~ 0.4. (Note that figures 84 and
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FIGURE 8. (a) First-return map of subharmonic—quarter-harmonic phase difference ¢ ; (b) averaged
first-return map of ¢, ; (¢) first-return map of quarter-harmonic amplitude a,; (d) averaged first-return
map of a, for intermittency between stable double pairing SDP and the quarter-harmonic chaotic
attractor QCA. Flow parameters the same as for figure 7.

8 ¢ show the first 10000 of the 25000 realizations used in the averages.) Although the
uncertainty (as seen in the data scatter) is much greater in this case than in the
SP-NPMP transition, we constructed an averaged return map assuming that the
function enters at the left, moving up and wrapping from = to 0, continuing up toward
a near-tangency below the diagonal then moving to the right and wrapping back to the
entry point. Since the heaviest concentration of points seems to be associated with the
branch below the diagonal but appears to cross over the diagonal due to scatter, all
points a distance > ¢ above the diagonal were averaged separately from those below
(see Appendix B). The result is shown in figure 8(b) for ¢ = 0.02. Even with the
averaging, the function is not very smooth. The averaged points will shift as ¢ is
changed; ¢ = 0.02 was chosen by inspection based on the distance by which the thickest
cluster seemed to lie above the diagonal. The figure does show a near-tangency below
the diagonal, while the approach above the diagonal is not nearly as close. The position
of the function relative to the diagonal, especially in the near-tangent region, is in
doubt since e is selected somewhat arbitrarily. However, tests using ¢ = 0, 0.01, 0.02
and 0.05 indeed show that the averaged function never crosses the diagonal; the
minimum distances were 0.005, 0.0018, 0.0017 and 0.0015 respectively. These results
suggest that a tangent bifurcation has taken place.
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A first-return map of a, (figure 8c) was also constructed to see if it provides any
insight into this apparent tangent bifurcation. Expecting a loop, points above and
below the diagonal were averaged separately to reveal a cycle (figure 8 ) with a long
cusp-like extension along the diagonal at high a,. Using the Broze-Hussain (1991)
model for pairing phase dynamics, amplitude can be extracted as a slaved variable to
phase; a return map reveals an amplitude loop (with a similar cusp) near the transition
to chaos. The similarities in our data (figures 8 5 and 8 4) and the model results (as well
as other comparisons made in Broze & Hussain 1991) suggest that our model may
adequately represent the experimental system in the periodic and transitional regions
of the parameter space.

22.2. Type of intermittency

Although the data are clearly intermittent (based on the observation of time series
similar to but much longer than in figure 7), the type of intermittency is unclear. There
are several indicators of type, which we describe and compare to our system in the
following. First, Pomeau & Manneville (1980) identified three types of intermittency
(I-IIT), defined in terms of map eigenvalues crossing the unit circle: (I) an eigenvalue
crosses at + 1, (II) a complex-conjugate pair crosses, and (III) an eigenvalue crosses
at —1. A complex version of the Broze-Hussain (1991) phase map (namely z =
cos¢+ising, where ¢, ,, = ¢, +2nh/(1+gcosg,)) does reveal a pair of complex-
conjugate eigenvalues crossing at the point of transition to chaos; hence type-II
intermittency is suspected. Second, characteristic frequency changes are associated
with each type of intermittency: type I involves a fundamental f; which does not
change, type II involves £, and a new frequency f,, and type III involves f, and f;/2. In
our experiments (see BH), SDP has a dominant frequency f,, /4 and its harmonics; the
transition to QCA leads to sidebands around f,, /2 and a broadband around f,,/4. The
appearance of new frequencies which are not subharmonics seems to rule out types I
and III and may indicate type II. Third, associated with each type of intermittency is
a universal probability distribution of the lengths 7 of periodic segments which has a
characteristic scaling exponent; this scaling exponent is investigated in the next
subsection.

2.2.3. Statistics of periodic signal lengths

It is expected that the lengths 7 of periodic segments should follow one of several
universal probability distributions, depending on the type of intermittency; the reader
is referred to Schuster (1988, p. 98) for details. The distribution should scale as
p(r) ~ 772 for small to moderate 7(r > 0) where ¢ equals 3, 2 or 2 for types I, II
or I1I respectively. As discussed below, the estimated g for our data is close to 2 over a
range of excitation amplitudes, indicating a type-1I intermittency.

Each realization (i.e. a pair of values a, and ¢,) determined over a period 4/f,, is
classified as SDP or QCA by using a minimum amplitude threshold and range of
acceptable phases. Then the number 7, of consecutive realizations classified as SDP is
counted, a histogram is made of the set of all 7,,, and its scaling exponent g is estimated.
An analysis of the effects of phase and amplitude thresholds on scaling exponents
is made in the section on intermittency statistics in Appendix B. Data were taken
at St;, =~ 1.20 for several different a,, each comprising at least 1.5 x 10° realizations (in
blocks of 5 x 10%).

The intermittency factor I (fraction of total realizations which do not meet the phase
and amplitude criteria for SDP) is shown in figure 9(a) as a function of a; in the
transition range. At a; = 1.26 %, the flow is almost 100 % chaotic and becomes almost
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FIGURE 9. (a) The intermittency factor I versus forcing amplitude a,, (b) the intermittency exponent
g versus /, and (c) a representative p.d.f. for the lengths of periodic double pairings at a, ~ 1.44 % for
intermittency between stable double pairing SDP and the quarter-harmonic chaotic attractor QCA.
St~ 12, Re, = 23x10%, x/D =2.0.

100 % SDP by a; ~ 1.78 %. The intermittency exponent g is shown in figure 9(b) as a
function of I. For I near zero, g is close to 1.25, but increases with / and levels off near
g ~ 2 in the range of 0.26 < 1< 0.84. For the case I~ 1 (a; ~ 1.78 %), there were
insufficient periodic segments to find a valid scaling exponent. Since ¢ represents the
power-law decay rate of the p.d.f. of periodic segment lengths, the general trend of ¢
increasing with 7 is expected: low / means SDP dominates, with more long periodic
segments and slower p.d.f. fall-off, while high / means QCA dominates, leaving very
few long periodic segments (without a proportional decrease in the number of short
periodic segments) and hence faster p.d.f. fall-off. The plateau in g for 0.26 <7< 0.84
indicates that ¢q is independent of I (and hence a;) over a substantial portion of the
intermittency range. And finally, the value of this plateau, ¢ & 2, coincides with the
scaling exponent for a type-II intermittency. A typical p.d.f. (figure 9¢) for the case
I~ 0.68 (a; ~ 1.44 %) shows power-law behaviour (with g = 1.95) for periodic lengths
of up to several hundred quarter-harmonic periods.
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FiGure 10. Comparison of subharmonic amplitude @, and quarter-harmonic amplitude a, as
functions of time at x/D = 2.0 for (a) stable double pairing SDP at St, ~ 1.19, a,  2.4%, Re, ~
2.3x10% and () stable pairing with modulated quarterharmonic at St, = 1.00, a, = 0.48 %, Re, ~
2.7x 104

2.2.4. Summary

Based on the intermittency exponent (in addition to the experimental spectra and
eigenvalues resulting from our model), the transition appears to be type-II
intermittency. Schuster (1988, p. 99) stated that ‘ Type-II intermittency has (to the best
of our knowledge) not yet been found in a real experiment’; subsequently Ringuet,
Roze & Gouesbet (1993) reported type-II intermittency in an experiment involving a
heated liquid—gas surface. Hence this is perhaps the first example of type-II
intermittency in an open flow and one of the first in experiments.

2.2.5. SDP-SPMQ transition

The transition from SP and SDP (see figure 1) goes through the SPMQ state (stable
pairing with modulated quarter-harmonic). This is an apparent transition from a
periodic state to a periodic state, but in fact it is likely to be two separate transitions:
SDP-SPMQ and SPMQ--SP. To illustrate the first transition, figure 10 shows traces of
subharmonic and quarter-harmonic amplitudes (a, and a,) for SDP and SPMQ. As is
apparent, a, and a, are both nearly constant for SDP, but a, becomes (non-
periodically) oscillatory for SPMQ. As St,, is decreased, a, remains stable and a,
continues to fluctuate but with diminishing amplitude until SP is reached. This suggests
that the first transition (SDP-SPMQ) may be a tangent bifurcation, while the second
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FIGURE 11. (a) Conceptual picture of the spatial development of fundamental and subharmonic
amplitudes and feedback for two subharmonic phase angles leading to enhanced or delayed vortex
pairings. (b) Sketches of the vortex configurations for cases when pairing is (i) nearly phase-locked,
(ii) somewhat delayed and (iii) delayed such that one vortex escapes pairing.

(SPMQ-SP) may instead be a smooth transition. However, since a, is not the dominant
component and data scatter is significant, this has not been verified by additional
analysis.

2.3. Feedback dynamics and tangent bifurcations

In order to explain the tangent bifurcations seen, figure 11(a) shows a conceptual
sketch of the essential system dynamics (namely vortex roll-up, pairing and feedback):
fand s growth, f saturation, f~s resonance, s saturation and feedback. The quantities
referred to in figure 11(a) are the amplitudes of velocity fluctuations at specific
frequencies, associated with induced velocity from vorticity fluctuations (e.g. advecting
and interacting vortices). A more detailed analysis of the vortex interactions and
spatially developing fluctuations connected with subharmonic resonance is given in
Husain & Hussain (1995).

As described in BH, the crucial nonlinearity is the ¢,-dependent resonant s growth
rate, which can change the pairing location substantially. The key to periodic pairing
is phase-locking; i.e. ¢, is the same for each pairing event. This requires that the cycle
time (growth-saturation—feedback) 7,, equal the subharmonic period 7, = 2/f,,. Since
feedback itself is almost instantaneous (moving at acoustic speed in a flow with Mach
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number M < 0.10), 74, is primarily determined by the evolution from x =0 to the
subharmonic saturation location x,. Assuming (for discussion only) a constant phase
speed ¢, 74, = x,/c. Since different ¢, result in different resonant subharmonic spatial
growth rates (Monkewitz 1988), we designate the saturation locations in figure 11(a)
to be x, for the maximum growth rate and x, 5, for the minimum growth rate, with
correspondlng minimum and maximum feedback cycle times 7, and 7, . (In fact, the
minimum growth rate could result in no pairing at all and 7, could be 1ndeﬁn1tely large,
but it is only necessary that 7, > 7, .) Thus, it obv1ously follows that a necessary
condition for phase locking is Ts < Ts < 7,, le. the subharmonic period must fall
between the maximum and minimum feedback times. It also follows that if T, <7y,
phase-locking and periodic dynamics are impossible.

How, then, does the transition from periodic pairing occur? Assume phase-locking
for some a, and St,,. As a, is decreased, x, shifts downstream due to the delayed onset
of subharmonic resonance (due to delayed f saturation) and a decreased feedback
amplitude. If a, is decreased sufﬁmently, 7, must exceed 7, and stable (periodic) palrmg
becomes impossible. This is the case in the SP-NPMP transmon In double pairing,
however, there are two subharmonic resonances, and hence there must be two phase-
lockings for SDP. Therefore, there can be two transition scenarios: (i) the first
resonance remains phase-locked while the phase becomes unlocked in the second
resonance or (ii) the first resonance (and, hence, the second) becomes phase-unlocked.
The second scenario apparently occurs in the SDP-QCA transition, while the first
seems to occur in the SDP-SPMQ transition.

Some essential vortex and feedback dynamics are captured by analysing phase and
amplitude maps. Take the case when phase becomes unlocked: successive pairings
move further downstream or even do not occur, and thus feedback (i.e. the self-
excitation mechanism) should become progressively weaker. The key question is: how
then does pairing recur after this? The answer is a jump in phase. In particular, the

.minimum amplitudes in the NPMP signal (figure 8a in BH and case (iii) in figure 2
here) occur when one vortex escapes pairing. Since there are two vortices in each 2n
pairing cycle, a skipped vortex should correspond to an overall phase jump of =, as seen
in cases (ii) and (iii) of figure 3(b) and in the abrupt phase jumps in figure 5. This is
shown in figure 11(5) (in this schematic, note that roll-up and pairing locations do not
match with figure 114a): in sketch (i), pairing occurs relatively early in x and the
feedback perturbs the second (not yet rolled up) vortex of the two unpaired vortices,
leading to their pairing; in sketch (ii), feedback occurs further downstream, perturbing
the second vortex again but with some delay which in turn delays their pairing. Finally,
pairing occurs so late (sketch iii) that a third vortex is already forming; thus the two
vortices nearest the exit will pair, but the one further away has no single vortex to pair
with (although it may interact eventually with either the upstream or downstream
pair). This skipped vortex is the mechanism by which the system is able to jump from
a phase which is unfavourable for pairing to one which is favourable; the upper halves
of the loops in the amplitude return maps for NPMP (figure 4b) and QCA (figure 8¢)
reflect the reinitiation of pairing and double pairing respectively after having reached
very low amplitudes.

Summarizing, the phase-locking/unlocking scenario can qualitatively explain all
three observed transitions. Based on data presented in §§2.1 and 2.2, at least two of the
three are intermittencies due to tangent bifurcations.
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FIGURE 12. Smoke visualization of three flow states at Re, =~ 2.3 x 10* and S7,, ~ 1.20: SDP at a, ~
2.4%, (a) Roll-up, pairing and double pairings; QCA at a, ~ 1.4%; (b) roll-up and pairings only;
(¢) roll-up, pairing and delayed double pairing; (d) roll-up, pairing and double pairings similar to
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2.4. Visualization of vortex dynamics

To verify the assumed axisymmetry and phase-locked/unlocked vortex dynamics,
three states were visualized at St; &~ 1.2: SDP, QCA and AM (as well as INT). Smoke
was introduced through a slit in the nozzle-exit nose cone (shown in the inset of figure
17). Simultaneously, hot-wire anemometry was used to verify the flow state; based on
our previous experience, the power spectrum and instantaneous signal were sufficient
to identify the state. The flow was illuminated by a floodlight strobed at the quarter-
harmonic frequency f,,/4 to allow phase-locked observation of double pairings; in
addition, we also recorded representative snapshots (not phase-locked) shown in figure
12 along with sketches of the vortex configurations. Figure 12(a—d) shows that both
SDP and QCA are axisymmetric, while figure 12(e—#) shows that AM is intermittently
non-axisymmetric. These snapshots (taken at intervals of several seconds or more,
much longer than the fundamental period of 4 ms) and our phase-locked visualization
are discussed below. The hot-wire probe used to verify the dynamical state can be seen
in the figures; we have verified that the presence of the probe does not influence the
vortex dynamics. To aid in distinguishing single, paired and doubly paired vortices,
note that the normalized wavelength A/D =~ (257,)7'; hence A/D = (0.4,0.8,1.6) for
ffer = (1,0.5,0.25) at this Sz,

One representative phase of SDP is captured in figure 12(a), which is quite similar
to the phase-locked coherent structure educed by Bridges & Hussain (1992) in the same
facility at a Re,, approximately three times larger (compare with the last panel of their
figure 6). Near the exit, the smoke sheet has rolled up into a vortex at x/D x~ 0.5.
Downstream, a double-pairing interaction is occurring: the vortex at x/D =~ 1.1 is
shrinking in radius prior to pairing with the vortex at x/D & 1.4; these will in turn
merge with the already-paired vortex seen at x/D =~ 1.9. At x/D x~ 3-3.8, a doubly
paired ring is seen with slight three-dimensionality. Another structure is seen advecting
out of the picture at x/D =~ 4.5. Tuned, or phase-locked, visualization (strobed exactly
at the quarter-harmonic frequency) revealed that the spatial structure is quite
repeatable; the vortex positions are seemingly fixed in space by the strobe with only
minor small-scale differences between realizations. Slightly detuned strobing revealed
successive phases of orderly, periodic single and double pairings.

Three different stages of QCA are shown in figure 12: (b) a sequence of pairings
without double pairing; (¢) 3-4 rolled-up vortices without apparent pairing (x/D <
1.8), a paired structure (x/D =~ 2.1) and a doubly paired structure (x/D = 3.5); and (d)
a double-pairing sequence similar to (a): two vortices beginning pairing near x/D & 1,
double pairing underway at x/D = 2, and a doubly paired structure at x/D = 3.5.
In (d), the double pairing at x/D ~ 2 shows a lack of axisymmetry (particularly in the

_trailing structure) and some azimuthal undulations. Unlike SDP, QCA involves non-
periodic sequences of vortex interactions in which vortices may or may not pair, and
paired vortices may or may not pair a second time. Strobing reveals that vortex
interactions are not phase-locked downstream of roll-up; each strobe flash captures a
different phase of a chaotic sequence. During SDP-QCA intermittency, strobing
showed the vortex positions phase-locking and unlocking as the signal switched from
periodic SDP to chaotic QCA.

We had previously speculated (BH) that the AM state involved non-axisymmetric
vortex dynamics (perhaps intermittent tilting). This is verified by recent visualization

SDP, AM at a, ~ 0.8 % (¢) roll-up and pairings with minimal tiiting; (/) roll-up and out-of-plane
tilting; (g) roll-up and in-plane tilting (note enhanced jet spread in this plane); and (4) roll-up and
in-plane tilting (a virtual mirror image of g).
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F1GURE 13. The evolution of vortex tilting and entanglement: (a) slight tilt of B leads to unequal
induced velocities on B, pushing B downward; (b) tilt is accentuated since the top of B moves toward
the jet centre and hence advects at a higher velocity; the bottom of B decelerates by the opposite
effect; and (c) B and C meet at the top and A and B meet at the bottom, initiating entanglement.

recorded in figure 12(e-h): (e) shows slight tilting during pairing, but essentially
axisymmetric paired rings downstream; rings are tilted primarily in the plane
orthogonal to the picture in (f), but are strongly tilted in the photo plane in (g) and
(). Note the apparent increase in jet spread in the tilting plane (as seen from the spread
of smoke in figure 12g) due presumably to non-axisymmetric vortex-induced motion.
Strobing revealed intermittent tilting and non-tilting, with the tilting plane rotating on
a time scale (of the order of a second or longer) much slower than the roll-up time.

These observations raise some questions about the origin and development of tilting
modes in jets. The source of the non-axisymmetric disturbances is not clear to us but
is presumably low-amplitude transverse modes of the facility settling chamber.
However, axisymmetric modes are expected to dominate. Michalke (1971) found for
circular jets that the spatial growth rates of the azimuthal modes m =0 and m = |
depend on R/@, the radius-to-momentum thickness ratio m = 1 has a larger growth rate
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for small R/6, but m = 0 has a larger growth rate for R/6 = 6; note that R/, ~ 100
in our jet, where 6, is the momentum thickness at the jet exit. Given the larger expected
growth rate and initial amplitude (via forcing) of the axisymmetric mode, how can
tilting modes be seen so close to the exit? There are two factors which may bear on this
question. First, while the amplitude of the fundamental axisymmetric mode is much
larger due to forcing, the subharmonic perturbations come only from feedback and are
much weaker; hence weak azimuthal instabilities might compete with axisymmetric
instabilities more favourably after roll-up. Second, the tilting is apparently an
instability of the rings in a jet rather than the jet alone; this can be explained by
vortex-induced motion once a tilting perturbation is present. Figure 13 sketches a
scenario for the evolution of vortex tilting and entanglement: (a) a slight tilt of vortex
B leads to unequal velocities induced on B by A (v,,) and by C (v,,), and causes B to
move downward; (b) tilt is accentuated since the top of B (and bottoms of A and C)
moves toward the jet centre and hence has a higher advection velocity (denoted by the
horizontal arrows); the bottom of B (and tops of A and C) decelerates by the opposite
effect; and (¢) vortices B and C meet at the top and A and B meet at the bottom,
initiating entanglement. Such vertical displacement, tilting and entanglement can
clearly be seen in the near field of figure 12(g-h).

Thus, the flow visualization has verified several presumed features of the vortex
dynamics: (i) (approximate) axisymmetry of SDP and QCA, (ii) phase-locked pairings
in SDP and phase-unlocked pairings in QCA, and (iii) intermittent tilting modes in
AM.

In the following section, we will present and discuss other interesting transitions,
namely hysteresis and the formation of an isolated branch in the experimental
bifurcation diagram, where QCA can be reached only by non-smooth parameter
changes.

3. Hysteresis

Hysteresis is direct evidence of non-uniqueness of solutions: for the same values of
the control parameters, two different stationary states coexist whose manifestation
depends on the path in parameter space as well as the initial conditions. We discovered
this phenomenon in our flow in the parameter region near the SDP-QCA transition
and investigated it in more detail.

3.1. Hpysteresis diagram

There is hysteresis in the region bounded by 1.1 < 57, < 1.4, 0.007 < a, < 0.07. Figure
14(a) shows the hysteresis region as a; is increased (lower branch) and decreased (upper
branch). The only four states found in this region are stable double pairing SDP, the
quarter-harmonic chaotic attractor QCA, aperiodic modulations AM and inter-
mittency INT. The connected lines in the a, direction indicate that data were taken by
varying a, at fixed S7,,; gaps in the lines indicate a change of state. Note that there are
two overlapping horizontal lines where hysteresis occurs; the actual (fixed) Sz, is
midway between these lines. Drawn at two different levels, these indicate various states
found when increasing and decreasing a,; the levels do not indicate different values of
a quantified state variable (e.g. dimension or r.m.s. signal component amplitudes). Sz,
is drawn increasing downward for comparison with the idealized picture given in figure
14(b).

At low St (1.13 and 1.17), no hysteresis is observed; as a, is increased, AM
undergoes an intermittency transition to QCA, which then becomes SDP via
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FIGURE 14. (a) Flow states in the hysteresis region of a,, St,, parameter space for f,, = 264 Hz showing
changes as forcing amplitude a, is increased (lower branches) and decreased (upper branches). (B)
Idealized picture of the local bifurcation surface in this region, where S designates some measure of
the system state.

intermittency. For S, > 1.2, QCA is found only on the descending path. At moderate
St5,(1.20 and 1.23) as a, is increased, AM undergoes a jump to intermittent QCA-SDP,
which gives way to SDP, but, as a, is decreased, SDP changes to QCA via
intermittency, followed by a jump to AM. At higher St, (1.26,1.29), QCA is not
observed as a stationary state when making smooth changes in a,. AM changes to SDP
via intermittency, and there is hysteresis in the values of a, at which intermittency is
seen.

The jump transitions are quite distinct from intermittency. In the observed
intermittency, the system switches from one state to the other ad infinitum at a fixed
value of a;; when a jump was seen, the system never returned to the pre-jump state.
Furthermore, at the jump points, long transients of the (newly) unstable state occurred
before the (now) stable state emerged. For example, at the jump at St,, ~ 1.20 from
AM to QCA-SDP, transient times of the order of 3 x 10* to 6 x 10* periods of f,,/4
were observed before the new state emerged. The jump with long transient periods
suggests that the transition is a boundary crisis (i.e. the collision in phase space of a
chaotic attractor with an unstable periodic orbit, which renders the chaotic state
unstable but permits long chaotic transients towards the periodic orbit; see Schuster
1988, p. 182).
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At higher St;, (1.26 and 1.29), QCA was observed if changes in a, were not smooth.
By quickly dropping a, from 0.038 to 0.019 at St,, = 1.26, stable QCA (marked by a
dashed circle on figure 14a) was obtained and observed for more than 10° periods of
f.o/4 without transition. This suggests that a stable isolated branch has become
separated from the main branch of the bifurcation diagram. At St, ~ 1.29, QCA was
obtained by a similar amplitude drop, but it disappeared after a transient time of
approximately 10%,,/4 periods. Since there is no prescribed method to jump into
isolated attractors (unlike the quasi-steady parameter changes ordinarily used), it is
possible that stable, isolated QCA exists at this St,, but was simply not found in our
experiments.

An idealized local bifurcation diagram is shown schematically in figure 14(5); S
indicates the state of the system. The thick lines represent an outline of the surface,
including the cusp, fold and branch. The thin lines denote sections taken by varying a,
at constant St similar to our experiments, while the dotted line shows the fold hidden
beneath the upper surface. This sketch is consistent with our data, i.e. with increasing
St,, a cusp is found, followed by a hysteresis fold, an isolated branch and the
disappearance of the branch. The shape of this diagram is similar to certain persistent
perturbed bifurcation diagrams of the winged cusp (a codimension-3 steady-state
singularity in contrast to our unsteady dynamics; Golubitsky & Schaeffer 1985),
suggesting that a universal unfolding of low codimension and no more than cubic order
might be sufficient to represent these transitions qualitatively.

3.2. Effect of St, on hysteresis

The presence of hysteresis suggests the role of additional parameters; one obvious
parameter which could effect the dynamics is St (the Strouhal number based on exit
momentum thickness). To investigate the effect of Sty , the excitation frequency was
changed from f,, = 264 Hz to f,, = 458 Hz (both belng discrete resonance frequencies
of the setting chamber). To obtain the same St,, in both cases, U, and Re; must be
increased by a factor of 458/264 ~ 1.735. Since St, = St,,6,/D, and 6,/ D varies as the
inverse square root of Re,, (i.e. ,/D ~ k/Re,'"* , where k ~ 0.73 in this facility), then
Sty, in the latter case will be approximately 75 % of its value in the base case for an
equivalent value of St,,.

Since the hysteresis region is a significant feature of the phase diagram, it was
searched for in St),-a, space after increasing f,,. Figure 15 shows the results of this
experiment in the format of figure 14(a), with states for increasing and decreasing a;,
shown offset on the same graph. The most striking difference is that the hysteresis
region has shifted to higher St,. For f,, =264 Hz (figure 14a), there are QCA
hystereses at St,, & 1.20 and 1.23 and an isolated QCA point at St;, ~ 1.26; there is
also intermittency hysteresis at higher St,. For f,, = 458 Hz, there is QCA hysteresis
at St,, in the range 1.34-1.48 and transient QCA at St,, ~ 1.54. No search was made
for the isolated branch of QCA.

The values St), and St, are shown for both cases in table 2. It can be seen that the
hysteresis regions fall in the common range 0.005 < St, < 0.006, but the S, ranges do
not overlap at all; this indicates that the controlhng parameter for hysteresis may
actually be St, . F urther this would imply that the primary instability in this case is a
shear-layer, rather than a jet-column, phenomenon. In this experiment, the shear-layer
frequency is closer to its ‘natural’ frequency than is the jet-column frequency. The St,,
of the dominant frequencies in unexcited jets fall in the range 0.3-0.4 (Hussain &
Zaman 1981), while this phenomenon has an St,, of three, four or even five times that;
in comparison, this range of Sty, 1s about half of the commonly observed ‘natural’
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FiGuURrEe 15. Flow states in the hystere51s region of a,, St, parameter space for f,, = 458 Hz showing
changes as forcing amplitude a, is increased (1ower branches) and decreased (upper branches).

St,

St,, f,=264Hz f, =458 Hz
1.20 0.0058 0.0044
1.23 0.0060 0.0046
1.26 0.0062 0.007
1.30 0.0066 0.0050
1.35 0.0069 0.0052
1.38 0.0071 0.0054
1.43 0.0075 0.0057
148 0.0079 0.0060
1.54 0.0085 0.0064

TABLE 2. Relationship between Sz, and St, for the hysteresis range; bold indicates in the
hysteresis range, 1tahcs indicate unstable or isolated QCA.

frequency of shear layers i.e. St ~ 0.012. The nature of the primary instability in jets
has been debated in the literature for quite some time (Crow & Champagne 1971;
Browand & Laufer 1975; Zaman & Hussain 1980; Cohen & Wygnanski 1987). While
St, is important in hysteresis, its role in other jet vortex dynamics, e.g. stable double
pairing, is not yet established. Studies where a,, Sz, and St, were controlled
independently would be of great help in answering this question, but such experiments
are difficult in laboratory facilities. Independent control of St and St, requires that
Re,, and f,, be continuously variable; discrete tunnel resonances make such a
frequency variation quite difficult. Furthermore, thorough studies with three
parameters instead of two might make experiments prohibitively long.

3.3. Connections between hysteresis and vortex dynamics

It appears that the different hysteresis branches (figure 14) may define regions where
(i) mixed axisymmetric and tilted vortex dynamics occur (lower branch) and (ii) only
axisymmetric dynamics occur (upper branch). Simultaneous visualization and
velocimetry by Berger (1993) in another UH facility reveal that aperiodically
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modulated states (called ‘AM’ in BH), found for Sr,, > 1 at a; less than that for SDP,
have intermittent tilted and untilted vortex rings. This was later confirmed in our
facility. As discussed in §2.4, it is clear that vortex rings in jet flow can be susceptible
to a tilting perturbation. Given this susceptibility, the evolution of the vortex
configuration after roll-up depends on whether axisymmetric or non-axisymmetric
perturbations dominate.

This competition (between types of perturbations) can be used to explain the
hysteresis. A certain level of axisymmetric perturbations (i.e. a,) is required to establish
SDP. However, once established, SDP augments the axisymmetric forcing with
axisymmetric feedback from the first and second pairings, thus increasing the level of
axisymmetric perturbations above that required for axisymmetric dominance without
an increase of a;. Therefore, it would be possible to decrease a, (by some amount)
without losing axisymmetry. Hence, the hysteresis would be due to the difference in the
higher a; required to establish axisymmetric vortex dynamics and the lower a; required
to maintain them once they were established.

To summarize, we have found hysteresis and investigated its dependence on flow
parameters, including the auxiliary parameter St,. In addition, we have provided a
tentative explanation for hysteresis in terms of vortex dynamics. Next, we present
measurements to verify that our dynamical system is indeed temporal in the transition
region of the jet.

4. The spatial extent of the dynamical system

The results presented in BH and in this paper are based on the assumption that the
dynamical system is temporal rather than spatio-temporal, enabling an understanding
of the dynamics from single-point measurements alone. This temporal assumption
implies that the dynamics must necessarily be coupled over an extended region. The
ideas of ‘temporal’ and ‘separable’ dynamics are related; both imply that the
dynamics can be represented by a countable (preferably finite) number of ordinary
differential equations (ODEs) associated with spatial basis functions. This concept is
implicit in dynamical modelling approaches using single-point data (e.g. Noack, Ohle
& Eckelmann 1992). On the other hand, ‘spatio-temporal’ and ‘non-separable’ are not
synonymous: spatio-temporal indicates that the applicability of the basis functions is
spatially limited because the dynamics in different regions are not well coupled. This
does not necessarily imply non-separability; local spatial bases might possibly permit
description using temporal ODEs.

Since the predominant dynamics are vortex roll-up and the first and second pairings,
for temporal dynamics this coupling must extend at least as far as the completion of
pairings. In BH, it was shown that the subharmonic saturates for SP by x/D ~ 2, and
the quarter-harmonic saturates by x/D & 3 for SDP and x/D ~ 4 for QCA ; these data
conform well to the coherent structures educed in Bridges & Hussain (1992) for SP and
SDP.

Spatial correlation is typically used to measure spatial coupling (Hohenberg &
Shraiman 1989 ; Cross & Hohenberg 1993). However, in spatially developing flows, the
relative amplitudes of dominant frequency modes change with axial position, causing
correlation to decay with x/D even though the development of these spectral
components individually may be perfectly spatially coupled. In these cases, a more
meaningful measure of spatial coupling is linear coherence 72112( N(= IGW.Z(‘I)IZ/
(Goo, (/) G, (), Where G is the auto- or cross-spectrum and x, and x, are
measurement locations), which can be thought of intuitively as a spectrum of
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FiGure 16. Coherence measurements as a function of downstream distance for dominant frequencies
(@, fundamental; W, subharmonic; <, lower subharmonic sideband; ¢, higher subharmonic
sideband; A, quarter-harmonic) for (@) SP at St, ~ 0.85, a, ~ 2.9%, Re, = 3.3 x 10%; (b) SDP at
St,~ 120, a,~2.4%, Re, ~2.3x10% (¢c) NPMP at Sz, ~0.68, a, ~ 3.4 %, Re, ~ 4.0 x 10*; and
(d) QCA at St, ~ 1.20, a, ~ 1.4%, Re, =~ 2.3 x 10%,

correlations at each frequency. If the dominant frequencies remain coherent over an
extended distance, one can consider the dynamics to be spatially coupled and hence
temporal. Linear coherence can decay when the flow has nonlinear interactions
(Miksad, Jones & Powers 1983; Ritz & Powers 1986); in this case, bicoherence (or
even higher order) can be estimated also to show nonlinear coupling. However, to
demonstrate coupling it is sufficient to estimate linear coherence. A detailed
investigation of the use of linear and nonlinear coherences to distinguish temporal and
spatio-temporal domains in spatially developing flows is the subject of a current
investigation.

Coherence was measured for four cases: SP, SDP, NPMP and QCA. A fixed probe
was placed in the potential core at x/D ~ y/D ~ 0.2, upstream of vortex roll-up in all
cases and slightly off centreline to avoid interference with the traversing probe. To
minimize downstream disturbances (e.g. a shear-layer tone originating from the fixed
probe), a special long-prong probe was used and placed such that only the prongs, and
not the probe body, was in the flow. A second probe aligned with the axis was traversed
down the jet centreline out to x/D = 12. These probes were simultaneously sampled
and coherence was calculated; these results are shown in figure 16 and are discussed
below. The coherence threshold between ‘coupled’ and ‘uncoupled’ is somewhat
arbitrary; for purposes of discussion, we use a coupling threshold of Y0, (f) =05

For SP, only one pairing typically occurs; thus only coherences at the fundamental
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(f) and subharmonic (s) frequencies are shown (figure 16a). Coupling extends to
x/D = Sfor fand x/D = 6 for s; both of these are well beyond the s saturation location
of x/D = 2. Coupling of the quarter-harmonic (g) for SDP (figure 165) extends even
further, beyond x/D = 8. For the chaotic cases, one might expect that coupling would
decay earlier in x, but this does not seem to be the case. Figure 16(c) for NPMP shows
that the subharmonic modulation sidebands actually remain coherent further
downstream (out to x/D ~ 7-8) than s does for SP. In NPMP, the modulations set in
due to a loss of phase-locking in the feedback; this in turn causes a delay in the
completion of pairing and, hence, extends the coherent region. Even in the chaotic
double-pairing QCA, coherence in the quarter-harmonic band (y,) remains above the
threshold beyond x/D = 7 (figure 16d), showing only a small decrease in the size of the
coupled domain. Notably, y, oscillates in space and is actually lower at the origin than
it is downstream (e.g. x/D = 4). This indicates that the second pairing is becoming
phase incoherent, possibly due to the onset of intermittent vortex tilting (discussed in
§3.3) or azimuthally distorted rings. The reference probe, placed off-axis at y/D =~ 0.2,
will sense variations in induced velocities due to non-axisymmetries that the centreline
probe cannot detect.

In all four cases, the results show that couplings at the dominant frequencies extend
well beyond their respective saturation locations (roughly twice as far from the exit, or
more). This confirms our assumption that the dynamical system is temporal in the
region under consideration.

5. Concluding remarks

The relatively simple transitions observed in this flow system, and the periodic and
chaotic attractors discussed in BH, combine to confirm the existence of a temporal
dynamical system in the transition region of forced jets and indicate that it may be
possible to construct low-dimensional models for this system. It is remarkable that this
occurs in a convectively unstable, physically open flow, where sensitivity to noise and
the absence of physically imposed global length and time scales could increase disorder
drastically. These experimental results clearly demonstrate that dynamical systems
exist in open flows and that dynamical systems theory is relevant to open flows.

One important question is how these measurements can give insight into the
coherent structure dynamics in jet transition. Details of individual vortex formation
and pairing have been studied in both numerical simulations and phase-locked
experimental measurements; these are not the current objectives. The objective here
has been to study the long-time behaviour of sequences of vortex formations and
interactions: what dynamical states occur, where do they occur in parameter space, are
they low-dimensional and deterministic, how do transitions occur between states, and
might it be possible to describe these via a dynamical system, hence permitting models
for flow prediction and control? Prediction and control of turbulence phenomena such
as entrainment, mixing, combustion, drag and noise is a primary motivation for our
interest in dynamical systems. In what follows, we review our conceptual dynamical
system and relate it to vortex dynamics.

The conceptual dynamical system (described in BH) involves the initially
independent exponential growth of two or more harmonically related instability waves
followed by one or more subharmonic resonances and feedback. The initial
perturbation at the fundamental frequency comes from forcing; the subharmonic/
quarter-harmonic perturbations are initiated by feedback from vortex pairings
downstream. As the fundamental wave reaches the nonlinear stage and saturates, a
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vortex forms. Subharmonic resonance begins when the fundamental reaches a critical
amplitude, and the resonant growth rate depends on the phase angle between the
fundamental and the subharmonic. The subharmonic wave is associated with the
interaction (i.e. mutually induced motions and eventual merger) of vortex pairs. The
acceleration of vorticity during pairing causes feedback, i.e. pressure fluctuations
transmitted to the jet exit. At some stage of vortex pairing, feedback reaches its
maximum amplitude. This comprises one cycle of the long sequence mentioned above.

Why is vortex pairing periodic or chaotic? Since forcing controls the evolution of the
fundamental (i.e. vortex roll-up), the flow controls the subharmonic evolution through
feedback. As described in §2.3, there are only two possibilities in the initiation—
growth—saturation—resonance—feed-back scenario: phase-locking or phase fluc-
tuation. Phase-locking makes the pairings periodic, guaranteeing the same resonant
growth rate, subharmonic saturation location and feedback amplitude in each cycle.
When phase becomes unlocked, the frequency and amplitude of the signal modulates
when measured at a point as done in our experiments. Phase fluctuation implies that
the pairing location moves upstream or downstream from one cycle to the next. These
fluctuations can be periodic or chaotic; our results here indicate that phase fluctuation
(and, hence, the associated spatio-temporal evolution of vortex pairing) is both
deterministic and low-dimensional.

The results presented here and in BH clearly demonstrate the existence of a low-
dimensional dynamical system in the transition region of an axisymmetric jet. It seems
clear that the system depends crucially on the vortex interactions in this region,
particularly vortex pairings due to subharmonic resonance. Further studies, employing
perhaps phase-locked measurements and/or simultaneous visualization and velocity/
vorticity data acquisition, will be necessary to connect more conclusively the
vortex dynamics and the nonlinear dynamical system. Moreover, this discovery of
temporal chaos in a convectively unstable, physically open flow makes it possible to
explore the transition from temporal to convective or spatio-temporal chaos by using
noise to break the feedback loop which closes the dynamics. Thus, we may be able to
move closer to the goal of describing and controlling spatio-temporal chaos in open
flows.

The authors are grateful to Professor Vladimir Shtern for fruitful discussions, Satish
Narayanan for a careful review of the manuscript, Professor Hyder Husain for help in
flow visualization and Bill Berger for figure preparation. This work was supported by
the Office of Naval Research grant N00014-89-J-1361.

Appendix A. Facilities, equipment and procedures
A.l. Facilities

The experiments were performed in a jet facility within a large anechoic chamber,
which is extensively documented in Bridges & Hussain (1992). The overall layout is
shown in figure 17 and is described below; letters in parentheses refer to those in the
figure. The chamber (K) is a ventilated and air-conditioned concrete box set on 44 air
bearings, with its 0.3 m thick walls (R) lined with a copper plate (S) to shield from
electromagnetic interference and covered by fibreglass wedges (T). The wedges are 1 m
long, giving the chamber an ambient sound level of 35 dB above 100 Hz; most of the
sound is transmitted through the jet pipe from the laboratory outside the chamber. The
inside dimensions of the chamber from wedge tip to wedge tip are 7.6 m x 5 m x 5 m.
Air feeding the jet originates at an inlet (A) in the air-conditioned room which contains
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FIGURE 17. Anechoic chamber and jet facility, including: A, air intake; B, compressor with mufflers
and vibration isolating couplings; C, DC, motor; D electrostatic filter; E, heat exchanger; F, screens;
G, honeycomb; H, bulk excitation device; J, nozzle; K, anechoic chamber; L, diffuser; M, speaker;
N, speaker housing; P, square-to-round section; Q, contraction; R, chamber wall; S, copper plate for
electrical shielding; T, fibreglass wedges.

the anechoic chamber; it is piped to a 7-stage blower (B) driven by a 40 h.p. DC motor
(C) and located outside the building, its outlet being connected to the nozzle in the
anechoic chamber via a 77 m long iron pipe of 15.25 ¢cm diameter. Mufflers and
vibration isolation couplings located on each side of the blower minimize the
transmitted sound and vibration. Between the blower and nozzle are several flow
conditioning devices. An electrostatic filter (D) removes any dust or dirt (95% of 2 um
particles) which might damage hot-wire probes. A cooling coil (E) allows the air to be
brought back to room conditions for accurate hot-wire measurements. Large-radius
elbows (1 m radius) are used at all bends to minimize secondary flow. Seven screens (F)
(24 and 40 mesh) and one honeybomb section (G) (0.48 cm cell, 5.08 cm thick) remove
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any asymmetry and swirl of the flow and are shown by short line segments between the
last bend and the nozzle (J). Machined from solid aluminium stock, the nozzle has a
15.25 cm inlet diameter and a 4 cm exit diameter; the contraction profile is a third-
order polynomial with one-half-radius straight sections at both ends.

The DC blower motor is controlled by a Polyspede HP-3 Adjustable Speed Drive
System, with adjustments for speed regulation, torque limits and acceleration. At low
speeds, the controller ‘hunts’ for the set point and introduces some low frequency
oscillations of the blower (=~ 0.3 Hz), but this is not significant at jet speeds U, 2
Sms™ (St < 2); in this study, the speed range used was 7 < U, < 21 m s™*. This
frequency is three decades lower than the excitation frequency and at least one decade
below the lowest observed modulation frequencies.

Bulk excitation (i.e. a longitudinal perturbation added to the mean flow) was
provided through the walls of the diffuser (I.) by four speakers (M) angled downstream.
Perturbations from the speakers pass through a wire mesh and cloth screen which are
flush with the walls of the diffuser and provided to prevent disturbance of the flow by
the openings of speaker housings (N) into the diffuser. The transfer function of this
facility between the speakers and the jet nozzle was reported by Bridges (1990).

A.2. Parameters

Because of discrete-frequency tunnel resonances, it is not possible to vary St;, smoothly
by changing frequency without simultaneously changing a, substantially; hence f,, was
fixed and St,, was varied by changing U,. The excitation frequency used in all cases was
264 Hz (with the exception of data presented in figure 15, where f,, = 458 Hz); this is
a resonance frequency of the jet settling chamber, permitting higher excitation
amplitudes.

Note that varying St (by changing U,) also varies Re,, (= 2.74 x 10/St,, for f,, =
264 Hz and D = 4 cm). However, these experiments are conducted in the transition
region of a laminar-exit, top-hat-profile jet, where Re,, has little effect on the dynamics
(e.g. the preferred mode or stable pairing frequencies). Stability theory suggests that
viscous jets become unstable at very low Re (e.g. Re,, = 4 in Bickley’s jet, cf. Drazin
& Reid 1985, §31.9, 21.8 < Re,, < 55.3 for viscous round jets with various initial
profiles and azimuthal wavenumbers; Kambe 1969; Mollendorf & Gebhardt 1973;
Lessen & Singh 1973 ; Morris 1976). The Re, range (1.8 x 10? < Re,, < 5.5 x 10%) in our
experiments is well above the theoretical stability limit for jets. Hence Re,, is not used
as a primary control parameter. The most notable effect of Re,, is on 6, and hence on
St,, (an auxiliary control parameter discussed in §3.2).

A.3. Data acquisition

Data for analysis were obtained using hot wires. A long-prong probe was placed in the
nozzle exit plane at approximately a 30° angle to the jet axis at y/R ~ 0.4 such that the
probe body was out of the flow to avoid shear-layer tones (Hussain & Zaman 1978).
This reference probe was used to measure u; and U,. A measurement probe (seen in
figure 12) aligned with the jet axis was placed on the centreline in the jet potential core
at axial locations in the range 1.5 < x/D < 3.0; all data presented were taken at
r/D = 0. As discussed in §4, any measurement location is adequate so long as it
is sufficiently far downstream to register fluctuations due to pairings but within the
potential core so that the probe captures the footprints of large-scale structures without
the effects of high shear-layer turbulence. Velocity was measured using AA Lab hot-
wire anemometers sampled using a 12-bit analog-to-digital converter controlled by a
MassComp 500 lab computer. Spectra were computed using an Ono-Sokki CF920



Transitions to chaos in a forced jet 67

two-channel, 16-bit digital spectrum analyser. For more details of experimental
facilities, laboratory equipment and computers, see BH and Bridges & Hussain (1992).

A.4. Flow properties

The exit velocity profile is top-hat, with D/6, in the approximate range 186-323. At
all velocities used, the exit-centreline total r.m.s. velocity fluctuations (excluding
excitation) are ¥’/ U, < 0.1 %, boundary layer profiles correspond well to the Blasius
profile, and boundary layer peak total r.m.s. velocity fluctuations are u,/U, < 0.5%.
Thus the nozzle exit boundary layer remained laminar at all velocities. Based on hot-
wire velocimetry and flow visualization, the length of the laminar core is 5-8 diameters.

Appendix B. Decompositions, averaged maps and intermittency statistics
B.1. Phase—amplitude decompositions

From subharmonic resonance theory and experimental observation, it is obvious that
the key dynamical variables are the component amplitudes a, and @, and phase
differences ¢, and ¢,. Decomposition of the signal into these variables is useful for two
reasons: (i) the key variables (perhaps a subset of these four) may be identifiable when
they are viewed separately rather than in combination and (ii) discrete variables makes
visualizing attractors more comprehensible by reconstructing them in a lower
dimension. The signal is assumed to have the following form:

flt) = a;cos 2nf,, t+¢,)+a,cos(nf,, t+d,) +a,cos(nf,, t/2+d,), (B1)

where ¢,, ¢, and ¢, are the phases of the fundamental, subharmonic and quarter-
harmonic waves with respect to an arbitrary phase reference. This is arbitrary because
the signal is divided into segments 7 = 2/f, . (if the quarter-harmonic can be neglected,
Le. for St;, € 0.95 approximately) or r = 4/f,,. (for St,, > 0.95 approximately), and the
instant that sampling began was not triggered on any particular phase of any signal
component. This arbitrariness is removed, however, by taking differences between
phases. For two frequencies f,, and f,, with phases ¢,, and ¢,,, phase difference can be
defined in a number of ways. For this work, we define

For example, ¢, = ¢,—1¢,. Alternative definitions include multiplying the right-hand
side of (B2) by —1,f,,/f,, or both. Any of these definitions is correct; only consistency
is necessary.

Operationally, amplitudes and phases are determined in the following way: (i) the
signal is subdivided into segments of length 7; (ii) in each segment, the real and
imaginary components of all desired frequencies are computed using discrete Fourier
transforms; and (iii) amplitudes and phase differences are computed using a =
(a2+a?)"? and ¢ = arctan (a,/a,). Using these data, various return maps can be made
to reconstruct attractors.

Errors can enter into the real and imaginary components either (i) through
bandwidth or (ii) if the segment length is not an integer multiple of the period of the
dominant frequency. In case (i), for example, if 7 = 2 /f,,, the bandwidth b = £, /2. This
means that the Fourier sums will include all fluctuations from f—f,,/2 to f+/,./2,
introducing an error. To decrease bandwidth requires increasing 7, thus making the
measurements an average rather than a near-instantaneous value. For case (ii), care
was taken to ensure that the segments were exactly one subharmonic or quarter-
harmonic period, eliminating such an error.
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In order to estimate phase error, one must analyse the defining equation. Phase was
computed from the following formula (substituting the phase definition into equation
(B2)):

b, a,
¢ = arctan ——}arctan—, B3)
b, a,

where a and b are fundamental and subharmonic amplitudes respectively, and
subscripts i and r refer to imaginary and real. The error ¢, in ¢, assuming equal errors
in real and imaginary components, is given by

2

€ €2 1z B4
€y = + )

o= (st @) B9
where © and v are ratios of the imaginary and real components of » and a respectively.
Thus, if one can estimate the errors in amplitude components, one can estimate the
phase error. For our averages, we assumed that the standard deviation of the
amplitudes within each bin was an indicator of the error. This is certainly an upper
~ bound, since the averaging bins are of finite width and there will be a variation of the
true amplitudes within the bins themselves.

B.2. Averages of first-return maps

The first-return maps of the phase difference ¢ were averaged to try to find underlying
map functions. The averages are described below for two cases.

For NPMP, the data in figure 5(a) were averaged as follows: (i) ¢ was unwrapped
so that points in the ranges 0.35 < ¢,/1 < 1.0, 0 < ¢,,,, /7 < 0.25 were shifted up by
1; (ii) the coordinates were rotated by —m/4; (iii) averages of abscissa and ordinate
were carried out for points falling in small bins of the rotated abscissa; (iv) the
averaged points were rotated back to the original coordinates; and (v) ¢ was wrapped
again and plotted in figure 5(b). By rotating the coordinates by — /4, the crucial near-
tangent region becomes horizontal, and errors in the ordinate introduced by averaging
over finite bins are minimized. Care was taken to size the bins so that each average was
carried out over at least 100 points; the minimum and maximum number of points per
bin were 104 and 590 respectively. Each bin in the region near the diagonal had at least
397 points (= 5% of 7893, the total number of points).

For SDP-QCA intermittency, all points at a distance > ¢ above the diagonal were
averaged separately from those below, and averages were obtained for different values
of €. This was done since it was not clear a priori where to separate the upper and lower
branches of the return map. The data in figure 8 (a) were averaged in the following way:
(1) all points more than ¢ above the diagonal are unwrapped to the right by adding |
to the abscissa (i.e. ¢ >¢@+m); (ii) the data are rotated by —n/4; (iii) the data are
averaged in bins of about 1000 points; (iv) the data are rotated by +n/4; and (v)
the data are wrapped again before plotting in figure 8(b). A similar rotation-
averaging—derotation was done (for data above and below the diagonal separately) to
obtain the averaged a, return map (figure 8d); equisized bins were used to ensure
uniform coverage of the loop, with at least 75 points in each bin.

B.3. Intermittency statistics

Since the results may be sensitive to the choices of amplitude and phase thresholds,
some studies of these thresholds were made. Figure 18(a) shows the estimated
probability density function (p.d.f.) of a, for three different forcing amplitudes: (i)
a;~ 1.26% (almost all QCA), (ii) a, ~ 1.44% (mixed QCA and SDP), and (iii)
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FIGURE 18. Estimates of the probability density functions for (#) quarter-harmonic amplitude a, and
(b) subharmonic-quarter-harmonic phase difference @, for intermittency between stable double
pairing SDP and the quarter-harmonic chaotic attractor QCA for St, ~ 1.20, Re, ~ 2.3 x 104,
x/D=20,at A, a,~126%;[d,a,~144% and @, a,~ 1.65%.

a; % 1.65% (almost all SDP). For cases (ii) and (iii), the p.d.f. is clearly bimodal,
demarcated by a local minimum at a, = 0.09. For case (i), there is no second peak
above a, ~ 0.09, consistent with the observation that the signal is virtually all QCA.
PDFs of ¢, for the same three cases reveal a large peak in the range 0.3 < ¢, < 0.43
for case (iii), with the peak becoming less distinct and shifting to lower ¢, as the SDP
fraction decreases (figure 185). This causes a problem in using ¢, thresholds to
discriminate SDP from QCA, since the threshold ranges might be different from each
a,. For three cases at high a; (where the ¢, peak is quite distinct and ¢, thresholds can
be selected by inspection), the distributions of periodic segment lengths were compared
using joint a,~— ¢, thresholds and g, thresholds alone and found to be similar. Thus,
the discrimination between SDP and QCA was done based on the amplitude threshold
a, = 0.09. Another threshold is the minimum periodic segment length 7, (measured
in quarter-harmonic periods). We found that statistics were similar for 2 < 7, <5,
which were distinctly different from statistics for 7,,,;, = 1; thus, scaling exponents were
averaged over the threshold range 2 < 7,,, <5. There were variations of ¢ with
different data sets, thresholds, and numbers of bins in the p.d.f.s, with deviations as
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much as 20% from the mean value. Even with these variations, the statistics most
closely support type-II intermittency.
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